Copied to
clipboard

G = S3×C22⋊Q8order 192 = 26·3

Direct product of S3 and C22⋊Q8

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×C22⋊Q8, C4⋊C425D6, D63(C2×Q8), (C2×Q8)⋊17D6, C223(S3×Q8), D6.59(C2×D4), (C4×S3).41D4, C4.185(S3×D4), (C6×Q8)⋊5C22, (C22×S3)⋊6Q8, C4.D1223C2, D6⋊Q817C2, D63Q812C2, C12.230(C2×D4), C22⋊C4.55D6, C6.72(C22×D4), D6.38(C4○D4), C6.34(C22×Q8), (C2×C6).170C24, (C2×C12).51C23, D6⋊C4.20C22, C4⋊Dic334C22, Dic3.47(C2×D4), (C22×C4).387D6, C12.48D435C2, Dic3⋊C430C22, (C2×Dic6)⋊27C22, Dic3.D422C2, (C22×C6).198C23, C22.191(S3×C23), C23.197(C22×S3), (C2×Dic3).85C23, (S3×C23).108C22, (C22×S3).192C23, (C22×C12).250C22, C6.D4.32C22, (C22×Dic3).224C22, (C2×S3×Q8)⋊5C2, (S3×C4⋊C4)⋊24C2, (C2×C6)⋊2(C2×Q8), C2.45(C2×S3×D4), C34(C2×C22⋊Q8), C2.17(C2×S3×Q8), C2.47(S3×C4○D4), (S3×C22×C4).7C2, (C3×C22⋊Q8)⋊6C2, (C3×C4⋊C4)⋊17C22, C6.159(C2×C4○D4), (S3×C22⋊C4).1C2, (S3×C2×C4).92C22, (C2×C4).45(C22×S3), (C3×C22⋊C4).25C22, SmallGroup(192,1185)

Series: Derived Chief Lower central Upper central

C1C2×C6 — S3×C22⋊Q8
C1C3C6C2×C6C22×S3S3×C23S3×C22×C4 — S3×C22⋊Q8
C3C2×C6 — S3×C22⋊Q8
C1C22C22⋊Q8

Generators and relations for S3×C22⋊Q8
 G = < a,b,c,d,e,f | a3=b2=c2=d2=e4=1, f2=e2, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, fcf-1=cd=dc, ce=ec, de=ed, df=fd, fef-1=e-1 >

Subgroups: 800 in 322 conjugacy classes, 121 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, S3, C6, C6, C2×C4, C2×C4, C2×C4, Q8, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C24, Dic6, C4×S3, C4×S3, C2×Dic3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C2×C12, C3×Q8, C22×S3, C22×S3, C22×S3, C22×C6, C2×C22⋊C4, C2×C4⋊C4, C22⋊Q8, C22⋊Q8, C23×C4, C22×Q8, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C6.D4, C3×C22⋊C4, C3×C4⋊C4, C3×C4⋊C4, C2×Dic6, C2×Dic6, S3×C2×C4, S3×C2×C4, S3×C2×C4, S3×Q8, C22×Dic3, C22×C12, C6×Q8, S3×C23, C2×C22⋊Q8, Dic3.D4, S3×C22⋊C4, S3×C4⋊C4, S3×C4⋊C4, D6⋊Q8, C4.D12, C12.48D4, D63Q8, C3×C22⋊Q8, S3×C22×C4, C2×S3×Q8, S3×C22⋊Q8
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, C4○D4, C24, C22×S3, C22⋊Q8, C22×D4, C22×Q8, C2×C4○D4, S3×D4, S3×Q8, S3×C23, C2×C22⋊Q8, C2×S3×D4, C2×S3×Q8, S3×C4○D4, S3×C22⋊Q8

Smallest permutation representation of S3×C22⋊Q8
On 48 points
Generators in S48
(1 32 47)(2 29 48)(3 30 45)(4 31 46)(5 44 14)(6 41 15)(7 42 16)(8 43 13)(9 19 39)(10 20 40)(11 17 37)(12 18 38)(21 33 25)(22 34 26)(23 35 27)(24 36 28)
(1 9)(2 10)(3 11)(4 12)(5 34)(6 35)(7 36)(8 33)(13 25)(14 26)(15 27)(16 28)(17 45)(18 46)(19 47)(20 48)(21 43)(22 44)(23 41)(24 42)(29 40)(30 37)(31 38)(32 39)
(1 11)(2 12)(3 9)(4 10)(5 7)(6 8)(13 15)(14 16)(17 32)(18 29)(19 30)(20 31)(21 23)(22 24)(25 27)(26 28)(33 35)(34 36)(37 47)(38 48)(39 45)(40 46)(41 43)(42 44)
(1 9)(2 10)(3 11)(4 12)(5 22)(6 23)(7 24)(8 21)(13 25)(14 26)(15 27)(16 28)(17 30)(18 31)(19 32)(20 29)(33 43)(34 44)(35 41)(36 42)(37 45)(38 46)(39 47)(40 48)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 26 3 28)(2 25 4 27)(5 17 7 19)(6 20 8 18)(9 14 11 16)(10 13 12 15)(21 31 23 29)(22 30 24 32)(33 46 35 48)(34 45 36 47)(37 42 39 44)(38 41 40 43)

G:=sub<Sym(48)| (1,32,47)(2,29,48)(3,30,45)(4,31,46)(5,44,14)(6,41,15)(7,42,16)(8,43,13)(9,19,39)(10,20,40)(11,17,37)(12,18,38)(21,33,25)(22,34,26)(23,35,27)(24,36,28), (1,9)(2,10)(3,11)(4,12)(5,34)(6,35)(7,36)(8,33)(13,25)(14,26)(15,27)(16,28)(17,45)(18,46)(19,47)(20,48)(21,43)(22,44)(23,41)(24,42)(29,40)(30,37)(31,38)(32,39), (1,11)(2,12)(3,9)(4,10)(5,7)(6,8)(13,15)(14,16)(17,32)(18,29)(19,30)(20,31)(21,23)(22,24)(25,27)(26,28)(33,35)(34,36)(37,47)(38,48)(39,45)(40,46)(41,43)(42,44), (1,9)(2,10)(3,11)(4,12)(5,22)(6,23)(7,24)(8,21)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29)(33,43)(34,44)(35,41)(36,42)(37,45)(38,46)(39,47)(40,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,26,3,28)(2,25,4,27)(5,17,7,19)(6,20,8,18)(9,14,11,16)(10,13,12,15)(21,31,23,29)(22,30,24,32)(33,46,35,48)(34,45,36,47)(37,42,39,44)(38,41,40,43)>;

G:=Group( (1,32,47)(2,29,48)(3,30,45)(4,31,46)(5,44,14)(6,41,15)(7,42,16)(8,43,13)(9,19,39)(10,20,40)(11,17,37)(12,18,38)(21,33,25)(22,34,26)(23,35,27)(24,36,28), (1,9)(2,10)(3,11)(4,12)(5,34)(6,35)(7,36)(8,33)(13,25)(14,26)(15,27)(16,28)(17,45)(18,46)(19,47)(20,48)(21,43)(22,44)(23,41)(24,42)(29,40)(30,37)(31,38)(32,39), (1,11)(2,12)(3,9)(4,10)(5,7)(6,8)(13,15)(14,16)(17,32)(18,29)(19,30)(20,31)(21,23)(22,24)(25,27)(26,28)(33,35)(34,36)(37,47)(38,48)(39,45)(40,46)(41,43)(42,44), (1,9)(2,10)(3,11)(4,12)(5,22)(6,23)(7,24)(8,21)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29)(33,43)(34,44)(35,41)(36,42)(37,45)(38,46)(39,47)(40,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,26,3,28)(2,25,4,27)(5,17,7,19)(6,20,8,18)(9,14,11,16)(10,13,12,15)(21,31,23,29)(22,30,24,32)(33,46,35,48)(34,45,36,47)(37,42,39,44)(38,41,40,43) );

G=PermutationGroup([[(1,32,47),(2,29,48),(3,30,45),(4,31,46),(5,44,14),(6,41,15),(7,42,16),(8,43,13),(9,19,39),(10,20,40),(11,17,37),(12,18,38),(21,33,25),(22,34,26),(23,35,27),(24,36,28)], [(1,9),(2,10),(3,11),(4,12),(5,34),(6,35),(7,36),(8,33),(13,25),(14,26),(15,27),(16,28),(17,45),(18,46),(19,47),(20,48),(21,43),(22,44),(23,41),(24,42),(29,40),(30,37),(31,38),(32,39)], [(1,11),(2,12),(3,9),(4,10),(5,7),(6,8),(13,15),(14,16),(17,32),(18,29),(19,30),(20,31),(21,23),(22,24),(25,27),(26,28),(33,35),(34,36),(37,47),(38,48),(39,45),(40,46),(41,43),(42,44)], [(1,9),(2,10),(3,11),(4,12),(5,22),(6,23),(7,24),(8,21),(13,25),(14,26),(15,27),(16,28),(17,30),(18,31),(19,32),(20,29),(33,43),(34,44),(35,41),(36,42),(37,45),(38,46),(39,47),(40,48)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,26,3,28),(2,25,4,27),(5,17,7,19),(6,20,8,18),(9,14,11,16),(10,13,12,15),(21,31,23,29),(22,30,24,32),(33,46,35,48),(34,45,36,47),(37,42,39,44),(38,41,40,43)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P6A6B6C6D6E12A12B12C12D12E12F12G12H
order12222222222234444444444444444666661212121212121212
size1111223333662222244446666121212122224444448888

42 irreducible representations

dim1111111111122222222444
type+++++++++++++-+++++-
imageC1C2C2C2C2C2C2C2C2C2C2S3D4Q8D6D6D6D6C4○D4S3×D4S3×Q8S3×C4○D4
kernelS3×C22⋊Q8Dic3.D4S3×C22⋊C4S3×C4⋊C4D6⋊Q8C4.D12C12.48D4D63Q8C3×C22⋊Q8S3×C22×C4C2×S3×Q8C22⋊Q8C4×S3C22×S3C22⋊C4C4⋊C4C22×C4C2×Q8D6C4C22C2
# reps1223211111114423114222

Matrix representation of S3×C22⋊Q8 in GL6(𝔽13)

100000
010000
001000
000100
00001212
000010
,
100000
010000
0012000
0001200
000010
00001212
,
100000
010000
001000
0021200
000010
000001
,
100000
010000
0012000
0001200
000010
000001
,
750000
360000
005000
0010800
0000120
0000012
,
160000
4120000
005800
000800
0000120
0000012

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,12,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,2,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[7,3,0,0,0,0,5,6,0,0,0,0,0,0,5,10,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,4,0,0,0,0,6,12,0,0,0,0,0,0,5,0,0,0,0,0,8,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;

S3×C22⋊Q8 in GAP, Magma, Sage, TeX

S_3\times C_2^2\rtimes Q_8
% in TeX

G:=Group("S3xC2^2:Q8");
// GroupNames label

G:=SmallGroup(192,1185);
// by ID

G=gap.SmallGroup(192,1185);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,100,794,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^4=1,f^2=e^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,f*c*f^-1=c*d=d*c,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽